Electrical System

Electrical Distribution

Confederation of Indian Industry CII – Godrej Green Business Centre, Hyderabad, India

Transformer

- Transformer
 - Heart of Electrical Distribution
- Category
 - Power Transformers
 - Distribution Transformers

Types Of Transformers

Transformer - Heart of Electrical Distribution

Distribution Transformer

- Normal Efficiency- 98% to 99%
- Iron loss is 10% to 15% of full load copper loss
- Fe loss take place throughout the day and Cu loss depends on load cycle
- Optimum efficiency occurs between 40% to 60% of loading

Power Transformer

- Normal Efficiency- 99% to 99.5%
- Iron losses is 20% to 25% of full load copper losses
- Cu and Fe loss take place through out the day
- Optimum efficiency occurs between 60% to 80% of loading

Transformer Efficiency

Case Study 1 – Parallel Operation of Transformer

Case Study 1 – Parallel Operation of Transformer

Case Study II – Isolate one transformer in Main Substation

© Confederation of Indian Industry

Case Study II – Isolate one transformer in Main Substation

Case Study III- Idle Charging of Transformer primary

11 KV * Idle transformer consumes power for its CB CB inherent magnetization losses □ No load loss = 3 kW 2000 KVA 2000 KVA 11 KV / 433 V 11 KV / 433 V CB CB

415 V

Case Study III- Idle Charging of Transformer primary

Energy Efficient transformer

- Core of the transformer is made of amorphous material
- Electrical resistivity of amorphous material is 2-3 times higher than silicon steel

- Crystalline structures have hard directions for magnetization
- Requires grain orientation processing for best properties

- 70-80 % less core losses
 than normal transformers
 under linear loads
 - More savings under non linear loads

- In Amorphous random Arrangement of atoms offers High electrical resistance for eddy current.
- Easy to magnetize and Demagnetize

Transformer Losses & Efficiency

				1			No Load Lo	oss (W)	Efficienc	y (%)
Transformer	Core Loss ((W)		Loss Reduction	Rating (KVA)	Amorphous	CRGO	Amorphous	CRGO
Rating	Silicon S In Service	Best	Amorphous wetai	wetai	%	250	180	570	98.7	98.2
50 kVA, 1-Phase	210	105	35	-		500	250	900	99	98.53
300 kVA. 3-Phase	1000	500	165	-	75 to 80%	630	200	1000	99.1	98.54
	1000	200				730	365	1250	99.2	98.65
						1000	450	1500	99.2	98.68

Transformer efficiency

TRANSFORMER EFFICIENCY

Example – Harmonics Losses (250 KVA)

Harmonic Content (THD~25%)									
Harmonics	1	3	5	7	9	11	13	15	17
Content (%)	100	1	20	10	1	9	6	1	5

Transformer Losses without Harmonic Distortion

Loss (W)	Amorphous Metal	Silicon Steel	
Hyteresis	99	155	
Eddy Current	33	311	
Total Core Loss	132	466	
Coil Loss	966	1,084	
Loading Level (%)	55	58	
Total Transformer Loss	1,098	1,550	

Transformer Losses with Harmonic Distortion of Table A

Loss (W)	Amorphous Metal	Silicon Steel	
Hyteresis	99	155	
Eddy Current	74	698	
Total Core Loss	173	853	
Coil Loss	1,553	1,671	
Loading Level (%)	55	58	
Total Transformer Loss	1,726	2,524	

Advantages

No Need for Added Devices such as Isolation Transformers, Harmonic Filters

30% less losses in harmonics rich environment

Lesser heat generation due to lower losses

- Slower ageing of insulation
- Longer Life

Superior electrical performance under harmonics condition

Lesser Magnetizing current

Power Factor

© Confederation of Indian Industry

Power Factor Analogy

Power factor = $\underline{kW} = \underline{kW} = \underline{Beer}$ KVA $\underline{kW} + KVAr$ Beer + Foam

PF Compensation methods

3 methods

- Centralized compensation
- Distributed compensation
- Mixed compensation

Power Factor Compensation

- Advantages
 - Easy P.F maintenance
 - Capacitor maintenance easy
- Disadvantages
 - More voltage drop in distribution
 - Over heating of cable resulting in failure
- Suitable if distance between
 PCC and MCC is less

Power Factor Compensation

Power Factor Compensation

Case Study-Improvement of Overall PF and Reduction of MD

Case Study

- Monthly Avg PF maintained at 0.96
- Sanctioned MD : 7300 kVA
- Min demand charges : 75% (5475 kVA)

Recorded monthly MD

- **6800 kVA**
- High demand charges: Rs. 250/kVA
- Action taken
 - Installed additional capacitor banks & APFC to improve PF
- PF improved to 0.99
 - kVA demand reduced by 240 kVA

Case Study-Improvement of Overall PF and Reduction of MD

Additional benefits

- Reduced voltage drop in feeders
- Feeder loss reduction
- Cushion for capacity expansion

Annual Savings	-	10.30 Lakhs
Investment	-	15.0 Lakhs
Payback	-	18 months

Capacitor Selection PF improvement benefits on system losses

- Chart Method
- Formula Method
 - Capacitor required (KVAr)
 - = kW x {Tan $\cos^{-1}\Phi_1$ Tan $\cos^{-1}\Phi_2$ }
 - $\operatorname{Cos} \Phi \mathbf{1} \operatorname{Present} \operatorname{power} \operatorname{factor}$
 - $\operatorname{Cos} \Phi \mathbf{2} \operatorname{Desired} \operatorname{power} \operatorname{factor}$

Benefits of Power factor Improvement

- Lower utility fees
- Increased system capacity
- Reduced system losses

% Reduction in system distribution losses

= 100-100 x (<u>Present Pf</u>)^2

New Pf

Harmonics

What are harmonics?

© Confederation of Indian Industry

Harmonics

- Normal Supply system operates at 50 Hz
- The Harmonics are sinusoidal waves that are integral multiples of fundamental frequency (150 Hz, 250Hz, 350Hz ...)
 - * 50hz fundamental wave
 - > 3rd Order Harmonics =150hz ,5th Order Harmonics =250hz, 7th
 Order Harmonics = 350hz etc.
- Pollution in Electrical System
- The overall impact of Voltage/ current harmonic distortion on a power system wave form is called as Total Harmonic Distortion(THD)/Total Demand distortion(TDD)

Fundamental waveform

This is an example of a linear load

Fundamental, 5th, 7th & 11th harmonics

CII

Resultant wave form

CII

Harmonics Generation Sources

Harmonics generation

- * Linear voltage applied to non linear loads
 - > Draws non linear currents which results in distorted voltage
- Non-linear Loads
 - Static Switches Diodes, SCR's, GTO's, Transistors, IGBT's etc.
- Devices / Equipment

Electrodes

K-Factor in Transformers

- It is a simple numerical rating that indicates the extra heating caused by harmonics
- Transformers ability to handle the extra heating is determined by

a K factor rating	Different types of Load	K Factor
□ K-1	Electric discharge lighting, UPS with optional input filtering	K-4
□ K-5	Welders, Induction heating equipment, PLCs and solid state controls (other than variable speed drives)	К-4
	Telecommunications equipment (e.g. PBX) , UPS without input filtering	K-13
	Multi wire receptacle circuits supplying inspection or testing equipment on an assembly or production line	K-13
	Mainframe computer loads, variable speed drives	K-20
	Multi wire receptacle circuits in critical care areas and operating/recovery rooms of hospitals	K-20

Effects of Harmonics on Power Factor

Effects of Harmonics on Power Factor

Harmonic Distortion - IEEE Std. 519-2014

Voltage Distortion limits

	Individual	Total Harmonic	
Bus voltage at PCC	Harmonic %	Distortion THD %	
V ≤ 1.0 KV	5	8	
1 kV < V ≤ 69 kV	3	5	
69 kV < V ≤ 161 kV	1.5	2.5	
161 kV < V	1	1.5	

Harmonic Distortion - IEEE Std. 519-2014

Maximum Current Distortion limits in % of IL for 120 v to 69 kV

Individual harmonic order (odd harmonics)								
I _{sc} /I _L	3 ≤ h < 11	$11 11 \le h < 17 17 \le h < 23 23 \le h$		23 ≤h<35	$35 \le h \le 50$	TDD		
<20	4.0	2.0	1.5	0.6	0.3	5.0		
20<50	7.0	3.5 2.5		1.0	0.5	8.0		
50<100	10.0	4.5	4.0	1.5	0.7	12.0		
100<1000	12.0	5.5	5.0	2.0	1.0	15.0		
>1000	15.0	7.0	6.0	2.5	1.4	20.0		

Even harmonics are limited to 25% of the odd harmonic limits above.

Current Distortion, TDD

- Depends on Isc/IL ratio of
 - > Generally less than 15%
- ***** TDD for current drawn from Transmission line at PCC is 8 %

Options for Reducing Harmonic Distortion

Use of Line Reactors

- Use of Harmonic mitigating/Phase shift transformers
 Installation of Harmonic filters
 - Passive filters
 - Active Filters
- Use of multi pulse converter
 - 12 pulse, 18 pulse & 24 pulse

Case Study Implemented in Engineering Plant

Harmonics Waveform

Installation of AHF

Waveform After AHF

Cost Economics

Saving -12 kVAh

Annual Savings	÷.,	Rs 7.88 Lakhs
Investment	÷.,	Rs 7.50 Lakhs
Payback	:	12 Months

Motors

Why to have focus on motors ??

*Source:- International Copper Association

Capacity of Motor - Horse Power ?

Work - Force applied over a distance Power – Rate of doing work

Motor Efficiency

Effectiveness with which a motor

converts Electrical energy to

Mechanical energy

Efficiency = Output Power X 100

Motor Losses

Current dependent -Copper losses

Stator

Rotor

• Voltage dependent -Iron losses

Magnetization

Eddy Current

• Friction and Windage losses

Motor Power Loss Model

Why your motors are becoming less Energy Efficient?

Performance of Motor at Partial Load

- Motor loading is critical factor
 - Motor η and power factor varies with % loading
- For lightly loaded motors
 - Voltage related losses high
 - Power factor is very low
 - More copper losses
 - Motor operates in less
 - efficiency range

How to Find Out Motor Loading?

A 3-Ph IM rated power for 75 kW, 415 V, 150A, 0.85pf and 92% draws 30 kW & 75 A.

What is % loading on motor?

65 %

40 %

50 %

0 37 %

Analysis of Loading Pattern

Analysis of Load Pattern

Measure kW input to motor using Portable Power Meter / Load Manager

Estimate % loading

Analyse Load pattern at different process conditions

Record the minimum & maximum Loading

Optimization Of Lightly Loaded Motors

Options Based on

- Nature of load
- Load factor
- Economic option

Options

Delta connection to permanent star connection

Steady load application

Automatic star-delta-star converters

variable loads

- Soft starter cum energy savers
 - High starting torque applications
- Variable voltage devices
- Down sizing
- Overall voltage optimization

Delta & Star Motor Connection

Convert Delta To Star Connection at Lightly Loaded Motors

Motors normally operated in delta mode

- Permanently Lightly loaded motors can be operated in star mode
- Effect on motor performance operating in star mode
 - Motor operating efficiency improves
 - Reduction in voltage related Iron losses
 - > Reduction in Cu losses

Before:

DELTA CONECTION OF MOTOR

STAR CONNECTION OF MOTOR

S.NO	EQUIPMENT	RATED KW	DELTA MODE POWER	STAR MODE POWER	POWER SAVING IN KW	ENERGY SAVING PER ANNUM IN KWH	Cost Savings
1	COOLING FAN - 1	3.7	2.15	1.23	0.92	7286	Rs 35000
2	Cooling Fan - 2	3.7	2.07	1.16	0.91	7207	Rs 34500
	TOTAL					14494	Rs 69 500
*Run hours taken 330days @ 24Hrs per day							

Energy Efficient Motor

- Use of lower loss silicon steel
- Longer core
- Thicker wires
- Thinner laminations
- Smaller air gap between stator and rotor
- Improved winding and lamination designs to minimize energy consumption

Energy Efficient Motor

Energy Efficient Motor

Lesser slip

- Copper instead of aluminum bars in the stator
- Improved fan design
 - Cooler operation & Increases motor insulation life
- □ 1.15 service factor
 - Greater flexibility in handling voltage variations and imbalances
- High power factor
 - Eliminate need for PF correction

Energy Efficient Motors

New efficiency classes defined by IEC -60034

Super premium efficiency *	IE4	Super premium efficiency		
Premium efficiency	IE3	Premium		
High efficiency	IE2	Comparable to EFF1		
Standard efficiency	IE1	Comparable to EFF2		

IEC standard indicated a Super Premium class with 15% lower losses than the IE3

IE efficiency classes for 50 Hz 4-pole motors

Loading vs Efficiency

□ Motors are generally loaded between 50 – 80%

- Due to Higher starting Torque
- Varying process requirements
- Efficiency of Energy Efficient Motors is higher than conventional motors and flat between 50 – 100% loading

Energy Efficient Motor – Part load Operation

When to Install EE Motors?

New Projects
 EE Motors ideally suited
 Rewinding of Old motors
 In case of Normal Failure
 Fit case for Replacement aff

Fit case for Replacement after rewound 5 times

Case Study-Replace old motors with Energy Efficient Motors

- Implemented in one of the Automobile plant
- Old motors
 - More than 20 years old
 - Rewound for many times
 - Reduction in efficiency
- Replaced 9 numbers of motors

Annual Saving	-	Rs 14.0 Lakhs
Investment	-	Rs 25.0 Lakhs
Payback period	-	22 Months

PERMANENT MAGNET SYNCHRONOUS MOTOR

PERMANENT MAGNET SYNCHRONOUS MOTOR

	Perman	ent Magnet	Savings using IE4 PMSM over IE2				
S.No.	Frame	kW	Pole	BBL IE4 PMSM Eff %	BBL IE2 Eff %	Energy (kWh) saving/year based on 6000 Hrs running	Rs. Saving/year based on power rate Rs.9 per kWh
1	112M	2.2	4	89.5	84.3	910	8188
2	112M	3.0	4	90.4	85.5	1141	10270
3	112M	3.7	4	90.9	86.3	1302	11716
4	1325	3.7	4	90.9	86.3	1302	11716
5	1325	5.5	4	91.9	87.7	1720	15477
6	132M	7.5	4	92.6	88.7	2137	19230
7	160M	11.0	4	93.3	89.8	2757	24814
8	160L	15.0	4	93.9	90.6	3491	31420
9	180M	18.5	4	94.2	91.2	3876	34885
10	180L	22.0	4	94.5	91.6	4422	39800

Replace Belt driven Fume Extractor with Direct Driven System

Replace Belt driven Fume Extractor with Direct Driven System

© Confederation of Indian Industry

Replace Belt driven Fume Extractor with Direct Driven System

Belt driven mechanism

- > Inefficient method
- > loss of 7-8% of total operational power
- Motor can be directly coupled to fan to avoid transmission losses

Action Plan

- Couple motor directly with blower
- Save the transmission losses

Replace Belt driven Fume Extractor with Direct Driven System

BLDC in Air Handling Units

System is a combination of all the conventional Motor functions given below

- 1. Motor
- 2. FAN
- 3. Inbuilt VSD
- 4. Functionality of Starter Panels
- 5. Voltage and Current Protections.
- 6. Harmonic Filtration.
- 7. Power Factor Correction
- 8. Communication Channels for BMS
- 9. 30-40 % energy savings

Without Maintenance

What is the new technology ?

Conventional System

- Motion Produced by Slip created in rotor and stator
- Motor Efficiency at varying load 40-80%
- Motor Efficiency full load 80 -85%
- Power Factor at drive level 0.6 to 0.8

Intelligent System

Motion Produced by Opposite Magnetic Field created in rotor and stator

- Motor Efficiency at varying load 92-95%
- Motor Efficiency full load >95%
- Power Factor at drive level Close to unity

Technology Implementation through Retrofit

© Confederation of Indian Industry

Technology Implementation through Retrofit

Technology Implementation through Retrofit

© Confederation of Indian Industry

EESL Motor Replacement Program

FEATURES OF PROGRAM:

Motor Efficiency Class: IE3

Ratings Considered (1st Phase): 1.1Kw,1.5kW, 2.2kw, 3.7kW, 5.5kw,7.5kw 11kw,15kw,22kw

Pole & Mounting: 4 Pole, Foot Mounting

Applications Considered: Pumps, Blower, Compressor

EESL Motor Replacement Program

Cost Benefit Analysis		
Eff. Classification as per IS 12615	IE1 (STANDARD MOTOR)	IE3 (HIGH ENERGY EFFICIENT MOTOR)
Output Kw	2.2	2.2
RPM	1420	1435
Efficiency %	79.7	86.7
% loading	70	70
Utilisation (Hrs)/year	5600	5600
Power Tariff (Rs. Kwh)	7	7
Annual Saving (INR)	-	6115
Approximate price of new motor	6400	8400
Difference in the prices (Rs.)	-	2000
Purchase price revocered in years	-	1.4

Within 16 months of installation, the cost of the entire IE3 motor is recovered (lifetime of a motor is 10-15 years).

Thank You....

